Journal of Organometallic Chemistry, 231 (1982) 151–159 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SOME RING REPLACEMENT AND NUCLEOPHILIC SUBSTITUTION REACTIONS OF η^6 -SUBSTITUTED ARENE- η^5 -CYCLOPENTADIENYLIRON HEXAFLUOROPHOSPHATES

C.C. LEE *, U.S. GILL, M. IQBAL, C.I. AZOGU, and R.G. SUTHERLAND *

Department of Chemistry and Chemical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N OWO (Canada)

(Received November 5th, 1981)

Summary

A number of nitroarene and aminoarene complexes, including the PF₆⁻ salts of NO₂C₆H₅FeCp⁺, o-, m- or p-CH₃(NO₂)C₆H₄FeCp⁺, NH₂C₆H₅FeCp⁺ and o-, m-, or p-CH₃(NH₂)C₆H₄FeCp⁺, when heated with an excess of P(OC₂H₅)₃ all gave rise to the ring replacement product, CpFe(P(OC₂H₅)₃)₃⁺ PF₆⁻ (I). Similarly, the thermal reaction of NO₂C₆H₅Fe(CH₃)Cp⁺ PF₆⁻ or NH₂C₆H₅Fe(CH₃)Cp⁺ PF₆⁻ with P(OC₂H₅)₃ gave CH₃CpFe(P(OC₂H₅)₃)₃⁺ PF₆⁻ (VII). With m-CH₃(Cl)C₆H₄-FeCp⁺ PF₆⁻ (XIV), heating with P(OC₂H₅)₃ also gave rise to I, while the same treatment with P(OC₂H₅)₃ at room temperature in CH₂Cl₂ showed no nucleophilic substitution of the chlorine atom of XIV by P(OC₂H₅)₃. On the other hand, the chlorine atom of a number of chloroarene complexes could be readily displaced at room temperature with various amines acting as nucleophiles. Such nucleophilic substitutions were carried out on ClC₆H₅FeCp⁺ PF₆⁻ and o-, mor p-CH₃(Cl)C₆H₄FeCp⁺ PF₆⁻ with methylamine, ethylenediamine, cyclohexylamine, benzylamine and pyrrolidine to give rise to 20 N-substituted aminoarene complexes.

Introduction

Recently, Gill and Mann [1] report a number of synthetic applications arising from ring replacement reactions when the η^6 -p-xylene- η^5 -cyclopentadienyliron cation was photolyzed in the presence of suitable two-electron or six-electron donor ligands. Among the results obtained was the formation of the previously unknown η^6 -tris(triethyl phosphite)- η^5 -cyclopentadienyliron hexafluorophosphate, CpFe(P(OC₂H₅)₃)₃⁺ PF₆⁻ (I), when the photolysis was carried out in the presence of triethyl phosphite. We wish to report that I can also be obtained under thermolysis conditions. Because we recently investigated the photolysis and thermolysis of the η^6 -azidobenzene- η^5 -cyclopentadienyliron cation which

6.7-7.0(m)(3H), 7.4-7.6(m)(2H) 6.7-6.9(m)(3H), 7.4-7.6(m)(2H) 6.9(d)(2H), 7.5(d)(2H) DATA ON THE NITROARENE COMPLEXES FROM THE H2O2 OXIDATION OF THE CORRESPONDING AMINOARENE COMPLEXES 6.8-7.7(m)(4H) 6.8-7.6(m)(4H) Aromatic ¹H NMR (6(acetone-d₆) (ppm) from TMS) 5.5(s)(5H) 5.4(s)(5H) 5.3(s)(4H) 5.2(s)(5H) 5.4(s)(5H) පි 2.8(s)(3H) 2.8(s)(3H) 2.7(s)(3H) 2.0(s)(3H) CH₃ 3,57 (3.60) 3,40 (3,48) 3,41 (3,48) 3,41 (3,48) 3,49 (3,48) (3,48) (3,48) Analysis (found (calcd.) (%)) z 2.79 3.05 3.05 3.17 3.17 3.17 3.17 3.00 3.03 3.03 (3.00) 3.04 (3.00) 3.04 (3.00) Ξ 33.72 (33.96) 35.90 (35.76) 35.49 (35.76) 35.44 (35.76) 35.37 (35.76) o Yield (%) 26 29 39 34 48 $m \cdot CH_3(NO_2)C_6H_4FeCp^+ PF_6^-$ (IV) o.CH₃(NO₂)C₆H₄FeCp⁺ PF₆⁻ (III) p-CH₃(NO₂)C₆H₄FeCp⁺ PF₆⁻ (V) NO₂C₆H₅FeCH₃Cp⁺ PF₆⁻ (VI) NO2C6H5FeCp⁺ PF6⁻ (II) Product

TABLE 1

152

gave rise to a ring contraction product, cyanoferrocene, via an intermediate nitrene complex [2], it would be of interest to attempt to generate the nitrene by an alternative method. Cadogan [3,4] has shown that nitrenes may be generated as reaction intermediates from the deoxygenation of nitro compounds upon treatment with triethyl phosphite. The present paper reports on the preparation of a number of η^6 -nitroarene- η^5 -cyclopentadienyliron cations and their reactions with triethyl phosphite. Since only the ring replacement product I, instead of a nitrene, was obtained, we have included in this paper the results from some other displacement reactions with η^6 -chloroarene- η^5 -cyclopentadienyliron cations.

Results and discussion

The η^6 -nitroarene- η^5 -cyclopentadienyliron hexafluorophosphates were prepared from the corresponding aminoarene complexes by oxidation with H₂O₂ in trifluoroacetic acid. The method is similar to that reported by Sheats and Rausch [5] in their oxidation of aminocobalticinium hexafluorophosphate to give the nitrocobalticinium salt. Attempts were also made using various concentrations of an aqueous solution of KMnO₄ as oxidizing agent, but they failed to give the desired conversion of the aminoarene complex to the nitro compound. Summarized in Table 1 are the data for the various nitroarene complexes prepared from the H₂O₂ oxidation.

When η^{6} -nitrobenzene- η^{5} -cyclopentadienyliron hexafluorophosphate (II) or the isomeric η^6 -o-, -m- or -p-nitrotoluene- η^5 -cyclopentadienyliron hexafluorophosphate (III, IV or V, respectively) was heated in an excess of triethyl phosphite at $130-140^{\circ}$ C for 18 h, conditions similar to those used in deoxygenation reactions [3], the product obtained in all cases was the ring replacement product. η^{6} -tris(triethyl phosphite)- η^{5} -cyclopentadienyliron hexafluorophosphate (I). The same treatment with triethyl phosphite on η° -nitrobenzene- η° -methylcyclopentadienyliron hexafluorophosphate (VI) again resulted in the replacement of the nitrobenzene ligand to give η^6 -tris(triethyl phosphite)- η^5 -methylcyclopentadienyliron hexafluorophosphate (VII). Indeed when the aminoarene complexes that were used in the preparation of the nitroarene complexes, namely, the hexafluorophosphate salts of η^6 -aniline- η^5 -cyclopentadienyliron, η^6 -o, -m- or -ptoluidine- η^{5} -cyclopentadienyliron, and η^{6} -aniline- η^{5} -methylcyclopentadienyliron cations (VIII, IX, X, XI and XII, respectively) were heated with triethyl phosphite at 150°C for 16–20 h, the ring replacement product I or VII was also obtained. The yields of I or VII from these reactions are given in Table 2.

It is of interest to point out that Gill and Mann [1] have shown that control thermal reactions with η^6 -p-xylene- η^5 -cyclopentadienyliron hexafluorophosphate in the presence of various ligands including triethyl phosphite at room temperature or in refluxing CH₂Cl₂ resulted only in the recovery of the unreacted starting material. The results given in Table 2, however, were obtained at much higher temperatures of 130–150°C. Control experiments carried out in complete darkness at these higher temperatures also gave results similar to those recorded in Table 2. It is, therefore, concluded that similar to the photolysis results obtained by Gill and Mann [1], the ring replacement product, I or VII, can also be formed by thermolysis at temperatures of 130–150°C.

YIELDS OF CpFe(P(OCH ₂ CH ₃) ₃) ₃ ⁺ PF ₆ ⁻ (I) OR CH ₃ CpFe(P(OCH ₂ CH ₃) ₃) ₃ ⁺ PF ₆ ⁻ (VII) FROM VARIOUS ARENE COMPLEXES											
Product	Yield (%) from reaction with ^a										
	II	III	IV	v	VI	VIII	ĩX	x	XI	XII	XIV
I VII	47	14	48	7 ^b		60	48	47	46		40
VII		-		_	36	_		-		60	_

^a II, III, IV, V and VI, respectively, are the hexafluorophosphate salts of $NO_2C_6H_5FeCp^+$, o., m-, or p-CH₃(NO₂)C₆H₄FeCp⁺ and NO₂C₆H₅FeCH₃Cp⁺; VIII, IX, X, XI and XII, respectively, are the hexa-fluorophosphate salts of $NH_2C_6H_5FeCp^+$, o-, m-, or p-CH₃(NH₂)C₆H₄FeCp⁺, and $NH_2C_6H_5FeCH_3Cp^+$; XIV is m-CH₃(Cl)C₆H₄FeCp⁺ PF₆^{- b} Another product, as yet unidentified, was obtained in about 20% vield.

Nesmeyanov and coworkers [6,7] have shown that the chlorine atom in η^{6} -chlorobenzene- η^{5} -cyclopentadienyliron tetrafluoroborate (XIII) could be readily replaced by a number of nucleophiles such as the ethoxy, thiophenoxy, *n*-butylthio, phthalimido and cyano groups. The "mobility" of the chlorine atom in XIII was estimated to be similar to the chlorine in 2.4-dinitrochlorobenzene [7]. Such nucleophilic substitution reactions have also been studied in the chromium tricarbonyl complexes of aryl halides [8] and in the η^6 -halogenobenzenetricarbonylmanganese salts [9]. In order to ascertain whether the chlorine atom in a chloroarene complex would be replaced by triethyl phosphite as a nucleophile, η^6 -m-chlorotoluene- η^5 -cyclopentadienyliron hexafluorophosphate (XIV) was heated with an excess of $P(OC_2H_5)_3$ at 150°C for 18 h, and a 40% yield of the ring replacement product I was obtained, a finding that is similar to those observed for the nitroarene and aminoarene complexes (Table 2). When the treatment of XIV in the presence of $P(OC_2H_5)_3$ was carried out in refluxing CH_2Cl_2 , the reactants were recovered unchanged, indicating no nucleophilic displacement of the chlorine atom by $P(OC_2H_5)_3$.

When amines were used as nucleophiles, displacement of the chlorine atom in the η^6 -chloroarene- η^5 -cyclopentadienyliron hexafluorophosphate by the nucleophile occurred readily to give various aminoarene complexes in good yield. Reactions of five amines with four chloroarene complexes were investigated. The chloroarene complexes employed included the η^6 -chlorobenzene- η^5 -cyclopentadienyliron hexafluorophosphate (XV) and the isomeric η^6 -o-, -m-, or -pchlorotoluene- η^5 -cyclopentadienyliron hexafluorophosphate (XVI, XIV or XVII, respectively), and the amine reagents utilized were methylamine, ethylenediamine, cyclohexylamine, benzylamine and pyrrolidene. Twenty nucleophilic substitution products were obtained and these were characterized by their ¹H and ¹³C NMR spectra. Given in Table 3 are the yields obtained and the ¹³C NMR data for these products.

The ¹³C NMR data in Table 3 are all consistent with the structures of the products. For example, in the first entry, the η^6 -N-methylaniline- η^5 -cyclopentadienyliron hexafluorophosphate shows, besides the Cp and CH₃NH peaks, 4 aromatic absorptions, 3 for the *o*-, *m*- and *p*-carbons and one for a quaternary carbon linked to the methylamino substituent. For the second entry, the η^6 -N-

TABLE 2

methyl-o-toluidine- η^5 -cyclopentadienyliron hexafluorophosphate, there are two CH₃ absorptions at 15.7 and 28.1 ppm, the one at lower field being bonded to the more electronegative N. All 6 aromatic carbons of the N-methyl-o-toluidine ligand are different, giving rise to 6 peaks. Of the 2 quaternary aromatic peaks, the one at 82.1 ppm is the o-carbon bonded to the CH₃ substituent, while the quaternary carbon linked to the more electronegative N substituent appears at 124.8 ppm. Similar interpretations can be made with all of the other ¹³C NMR data, and these data thus constitute support for the assigned structures of the various nucleophilic substitution products.

Recently, we have utilized the neutral zwitterionic species from the deprotonation of η^6 -arene- η^5 -cyclopentadienyliron cations as nucleophiles in a variety of synthetic applications [11,12]. When the isomeric η^6 -o-, -m- or -p-toluidine- η^5 -cyclopentadienyliron cation was deprotonated, it was a H on the amino group, rather than a H on the methyl group, that was removed, and reaction of the resulting zwitterion with, for example, substrates such as CH₃I or CH₃COCI would give rise to alkylated or acylated aminobenzene complexes [12]. The present results obtained from nucleophilic substitutions on η^6 -chloroarene- η^5 cyclopentadienyliron hexafluorophosphates with different amines thus constitute a further extension of the synthetic approaches to a variety of N-substituted aminoarene complexes.

Experimental

η^{6} -Nitroarene- η^{5} -cyclopentadienyliron hexafluorophosphates

 η^6 -Aniline- η^5 -cyclopentadienyliron hexafluorophosphate (VIII) and η^6 -o, -m- or -p-toluidine- η^5 -cyclopentadienyliron hexafluorophosphate (IX, X or XI, respectively) were obtained by ligand exchange reactions between the aminoarene and ferrocene as previously described [12]. η^6 -Aniline- η^5 -methylcyclopentadienyliron hexafluorophosphate (XII) was also prepared by a similar ligand exchange reaction between aniline and a commercially obtained 1,1'-dimethylferrocene. The various nitroarene complexes, NO₂C₆H₅FeCp⁺ PF₆⁻ (II), o-, m- or p-CH₃(NO₂)C₆H₄FeCp⁺ PF₆⁻ (III, IV or V, respectively), and NO₂C₆H₅Fe-(CH₃)Cp⁺ PF₆⁻ (VI) were prepared from the oxidation of the corresponding aminoarene complex with H₂O₂ in trifluoroacetic acid [5]. A typical experiment is given below.

The aniline complex VIII (3.35 g, 9.0 mmol) was added with stirring to 80 ml of a 1/1 solution of 30% H₂O₂ and trifluoroacetic acid. The mixture was heated at 75°C for 30 min. The resulting orange-yellow solution was cooled, diluted with 25 ml of H₂O and extracted four times of 25 ml aliquots of a 1/4 mixture of CH₃NO₂/CH₂Cl₂. The combined extract was dried over MgSO₄ and the solvent was removed under reduced pressure, giving a residual yellow-brown oil. Water (15 ml) was then introduced and acetone was gradually added until a homogeneous solution was obtained. Upon addition with stirring of a concentrated aqueous solution of NH₄PF₆, the nitrobenzene complex II appeared as a yellow precipitate. It was collected by filtration and crystallized from acetone/ ether. The yield was 1.43 g (39%); its analysis and ¹H NMR data are given in Table 1.

156

TABLE 3. DATA ON THE SUBSTITUTION PRODUCTS FROM THE REACTION OF η	-CHLORO-
BENZENE- π^5 -GYCLOPENTADIENYLIRON HEXAFLUOROPHOSPHATE (XV) OR π^6	

Reagent a	Sub-	Product ^b	Yield	
	strate		(%)	-
CH ₃ NH ₂	XV	$CH_3NHC_6H_5FeCp^4 PF_6^{-d}$	81	
CH ₃ NH ₂	XVI	o-CH ₃ (CH ₃ NH)C ₆ H ₄ FeCp ⁺ PF ₆	86	
CH ₃ NH ₂	XIV	m-CH ₃ (CH ₃ NH)C ₆ H ₄ FeCp ⁺ PF ₆	86	
CH ₃ NH ₂	XVII	p-CH ₃ (CH ₃ NH)C ₆ H ₄ FeCp ⁺ PF ₆	85	
H2NCH2CH2NH2	xv	H2NCH2CH2NHC6H5FeCp ⁺ PF6	70	
$H_2NCH_2CH_2NH_2$	XVI	o-CH ₃ (H ₂ NCH ₂ CH ₂ NH)C ₆ H ₄ FeCp ⁺ PF ₆ ^{-d}	65	
H2NCH2CH2NH2	XIV	m-CH ₃ (H ₂ NCH ₂ CH ₂ NH)C ₆ H ₄ FeCp ⁺ PF ₆	69	
	хvп	an an Now on NUNG IL E-Ort DE-C	84	
$H_2NCH_2CH_2NH_2$ c-C ₆ H ₁₁ NH ₂	XV	p-CH ₃ (H ₂ NCH ₂ CH ₂ NH)C ₆ H ₄ FeCp ⁺ PF ₆ c-C ₆ H ₁₁ NHC ₆ H ₅ FeCp ⁺ PF ₆	68	
			48	
c-C ₆ H ₁₁ NH ₂	XVI	o-CH3(c-C6H11NH)C6H4FeCp ⁺ PF6 ⁻	48	
c-C ₆ H ₁₁ NH ₂	XIV	m-CH ₃ (c-C ₆ H ₁₁ NH)C ₆ H ₄ FeCp ⁺ PF ₆	75	
$c-C_6H_{11}NH_2$	XVII	<i>p</i> -CH ₃ (c-C ₆ H ₁₁ NH)C ₆ H ₄ FeCp ⁺ PF ₆	72	
C ₆ H ₅ CH ₂ NH ₂	xv	C ₆ H ₅ CH ₂ NHC ₆ H ₅ FeCp ⁺ PF ₆ ⁻	70	
C ₆ H ₅ CH ₂ NH ₂	XVI	o-CH3(C6H5CH2NH)C6H4FeCp ⁺ PF6	80	
C ₆ H ₅ CH ₂ NH ₂	XIV	m-CH3(C6H5CH2NH)C6H4FeCp ⁺ PF6	81	
C ₆ H ₅ CH ₂ NH ₂	хин	p-CH3(C6H5CH2NH)C6H4FeCp ⁺ PF6	78	÷
		• • • • • • • • •		
		N-C ₆ H ₅ FeCp ⁺ PF ₆	89	
NH XVI	oC	FeCp ⁺ PF ₆ ⁻	85	
	m	CH3C6H2-N FeCp + PF6	77	
	<i>p-</i> C	FeCp + PF6	77	

^a As this work was in progress, Nesmeyanov and coworkers [10] reported briefly that they have carried out an analogous substitution reaction between XV and piperidine. ^b Satisfactory C, H, N analyses were obtained for all of the products. ^{c 1}H NMR spectra consistent with the structures of the products were also

CHLOROTOLUENE- η^5 -CYCLOPENTADIENYLIRON HEXAFLUOROPHOSPHATE (XVI, XIV OR XVII, RESPECTIVELY) WITH VARIOUS NUCLEOPHILES

Ср	Aromatic	Others		
74.7	67.1, 79.9, 85.1; 126.1(quat) ^e	28.4 (CH ₃ NH)		
74.5	64.1, 78.6, 83.3, 86.8;	15.7 (CH ₃); 28.1 (CH ₃ NH)		
	82.1(quat), 124.8(quat)			
74.5	65.3, 68.1, 79.9, 84.0;	18.9 (CH ₃); 28.1 (CH ₃ NH)		
	100.2(quat), 125.7(quat)			
74.7	66.0, 84.9; 94.8(quat), 124.9(quat)	17.8 (CH ₃); 28.1 (CH ₃ NH)		
74.3	66.8, 79.3, 84.7; 125.4(quat)	42.7, 48.5 (CH ₂)		
75.4	65.4, 79.2, 83.9, 87.6;	16.6 (CH ₃); 43.5, 49.3 (CH ₂)		
	82.5(quat), 124.7(quat)			
74.7	65.4, 68.3, 79.8, 84.0;	18.9 (CH ₃); 42.7, 48.6 (CH ₂)		
	100.2(quat), 125.0(quat)			
74.9	66.2, 85.1; 94.6(quat), 124.4(quat)	17.9 (CH ₃); 43.0, 48.7 (CH ₂)		
74.7	66.2, 79.1, 85.0; 125.4(quat)	23.4, 24.4, 31.4 (CH ₂); 50.2 (CH)		
74.8	64.3, 78.2, 83.3, 87.1;	15.9 (CH ₃);		
	80.7(quat), 123.9(quat)	23.6, 24.2, 31.2 (CH ₂); 50.6 (CH)		
75.3	65.1, 67.9, 79.9, 84.4;	19.4 (CH ₃);		
	100.7(quat), 125.0(quat)	23.8, 24.7, 31.7 (CH ₂); 50.5 (CH)		
75.9	66.3, 85.9; 95.2(quat), 125.0(quat)	18.6 (CH ₃)		
10.0	00:01 00:01 00:0(444.)/ 120:0(444.)	24.2, 25.1, 32.2 (CH ₂); 52.0 (CH)		
74.4	67.0, 79.6, 84.9; 125.1(quat)	45.4 (CH ₂)		
	(complexed ring)	10.1 (01-2)		
	127.0, 127.2, 128.0; 136.8(quat)			
	(uncomplexed ring)			
74.5	64.4, 78.5, 83.0, 87.0;	15.9 (CH ₃); 45.2 (CH ₂)		
14.0	81.9(quat), 123.9(quat) (complexed ring)	2010 (01-3)(201- (12)		
	126.8, 127.0, 127.9;			
	136.9(quat) (uncomplexed ring)			
74.5	65.3, 68.3, 79.9, 83.9;	18.8 (CH ₃); 45.2 (CH ₂)		
14.0	100.1 (quat), 124.5 (quat) (complexed ring)			
	126.8, 127.0, 127.8;			
	136.7(quat) (uncomplexed ring)			
74.8	66.2, 84.8;	17.8 (CH ₃); 45.2 (CH ₂)		
	94.7(quat), 123.7(quat) (complexed ring)	· •		
	126.8, 127.0, 127.8;			
	136.6(quat) (uncomplexed ring)			
	20010(1===) (================;			
73. 9	66.5, 79.1, 84.7; 124.1(quat)	23.9, 46.8 (CH ₂)		
74.7	64.7, 79.9, 83.3, 88.8;	20.9 (CH ₃); 24.4, 49.7 (CH ₂)		
	83.7(quat), 127.4(quat)			
74.0	64.9, 68.0, 79.7, 83.8;	19.0 (CH ₃); 23.8, 46.7 (CH ₂)		
	83.7(quat), 127.4(quat)			
74.2	65.8, 84.8;	17.8 (CHa): 23.7 46.7 (CHa)		
1 2.4	94.2(quat), 122.8(quat)	17.8 (CH ₃); 23.7, 46.7 (CH ₂)		

obtained. ^d The ¹³C NMR spectra were obtained using CD_3CN instead of acetone- d_6 as solvent. ^e (quat) denotes quaternary carbons with much lower peak intensities.

Reactions with triethylphosphite

The nitroarene complex II, III, IV or V was heated under reflux with 4 equivalents of $P(OC_2H_5)_3$ at 130–140°C under N₂ for 18 h. The excess $P(OC_2H_5)_3$ was removed under reduced pressure. The solid residue was taken up in acetone and chromatographed through an alumina column. Elution with a 1/1 mixture of acetone/CH₂Cl₂ gave the ring replacement product, CpFe($P(OC_2H_5)_3$)₃⁺ PF₆⁻ (I). After crystallization from CH₂Cl₂/ether, the yields obtained are given in Table 2. Typically, from the reactions of 0.64 g (1.6 mmol) of NO₂C₆H₅-FeCp⁺ PF₆⁻ (II) with 1.10 g (6.4 mmol) of $P(OC_2H_5)_3$, 0.50 g (47%) of I was obtained. The ¹H NMR spectrum of I is the same as reported by Gill and Mann [1]. (Found: C, 36.18; H, 6.48. C₂₃H₅₀O₉FeP₄F₆ calcd.: C, 36.13; H, 6.54%).

When the same reaction was carried out under the same conditions with $NO_2C_6H_5Fe(CH_3)Cp^+ PF_6^-$ (VI), a 36% yield of $CH_3CpFe(P(OCH_2CH_3)_3)_3^+ PF_6^-$ (VII) was obtained; ¹H NMR, δ (acetone- d_6) 1.17(t, 27H, 9CH₃), 1.93(s, 3H, CH₃Cp), 3.97–4.45(m, 18H, 9CH₂), 4.52–4.82(m, 4H, Cp). (Found: C, 36.72; H, 6.81. $C_{24}H_{52}O_9FeP_4F_6$ calcd.: C, 37.03; H, 6.73%).

When the aminoarene complex VIII, IX, X or XI was heated with 4 equivalents of $P(OC_2H_5)_3$ at 145–150°C for 16 h and the resulting material worked up as described above, the ring replacement product I was obtained in yields as given in Table 2. With $NH_2C_6H_5Fe(CH_3)Cp^+ PF_6^-$ (XII), the heating at 145–150°C was extended to 20 h, and a 60% yield of VII was obtained.

Reactions of chloroarene complexes with amines

The chloroarene complexes, $ClC_6H_5FeCp^+ PF_6^-$ (XV) and the *o*-, *m*- or *p*-CH₃(Cl)C₆H₄FeCp⁺ PF₆⁻ (XVI, XIV or XVII, respectively) were prepared from ligand exchange reactions between ferrocene and the chloroarene as previously reported [13–15]. A general procedure for the nucleophilic substitution of the chlorine atom in XV, XVI, XIV and XVII with various amines as nucleophiles is given below.

A solution of 2–4 mmol of the chloroarene complex and an excess of the amine (6–10 equiv.) in 30 ml of CH_2Cl_2 was stirred at room temperature for 10–12 h. To the resulting material, a concentrated aqueous solution of NH_4PF_6 was added and the mixture was extracted with CH_2Cl_2 . After drying over MgSO₄ and removal of most of the solvent, addition of ether precipitated the product which was recrystallized from CH_2Cl_2 /ether. In a typical reaction, a solution of 1.57 g (4.0 mmol) of $ClC_6H_5FeCp^+ PF_6^-$ (XV) and 3.90 g (36.4 mmol) of benzylamine in 30 ml of CH_2Cl_2 was stirred overnight (about 12 h) and worked up as described above to give 1.44 g (78%) of η^6 -N-benzylaniline- η^5 -cyclopenta-dienyliron hexafluorophosphate as listed in Table 3.

The above general procedure was used for the reaction of XV, XVI, XIV and XVII with methylamine, cyclohexylamine, benzylamine and pyrrolidine except that in the reaction of o-CH₃(Cl)C₆H₄FeCp⁺ PF₆⁻ (XVI) with cyclohexylamine or benzylamine, CH₃CN instead of CH₂Cl₂ was used as solvent. In the reactions with ethylenediamine as nucleophile, a prolonged reaction time gave rise to poor yields and impure products, probably because of the possibility of further reaction of ClC₆H₅FeCp⁺ PF₆⁻ (XV) with a 10 molar equivalent of H₂NCH₂CH₂-NH₂ in CH₂Cl₂, the reaction mixture was stirred for only 10 min, while in the

S. 18.

reaction of o-, m-, or p-CH₃(Cl)C₆H₄FeCp⁺ PF₆⁻ with H₂NCH₂CH₂NH₂, the reaction time was 1.0 h.

Acknowledgement

The financial support given by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References

- 1 T.P. Gill and K.R. Mann, J. Organometal. Chem., 216 (1981) 65.
- 2 C.C. Lee, C.I. Azogu, P.C. Chang, and R.G. Sutherland, J. Organometal. Chem., 220 (1981) 181.
- 3 J.I.G. Cadogan and S. Kulik, J. Chem. Soc. C, (1971) 2621.
- 4 J.I.G. Cadogan (Ed.), Organophosphorus Reagents in Organic Synthesis, Academic Press, 1979, Chap.
 6.
- 5 J.E. Sheats and M.D. Rausch, J. Org. Chem., 35 (1970) 3245.
- 6 A.N. Nesmeyanov, N.A. Vol'kenau, and I.N. Bolesova, Doklady Akad. Nauk SSSR, 175 (1967) 606.
- 7 A.N. Nesmeyanov, N.A. Vol'kenau, I.S. Isaeva, and I.N. Bolesova, Doklady Akad. Nauk SSSR, 183 (1968) 834.
- 8 J.F. Bunnett and H. Hermann, J. Org. Chem., 36 (1971) 4081.
- 9 P.L. Pauson and J.A. Segal, J. Chem. Soc. Dalton Trans., (1975) 1677.
- 10 A.N. Nesmeyanov, N.A. Vol'kenau, I.N. Bolesova, and L.S. Shul'pina, Doklady Akad. Nauk SSSR, 254 (1980) 1408.
- 11 R.G. Sutherland, B.R. Steele, K.J. Demchuk, and C.C. Lee, J. Organometal. Chem., 181 (1979) 411.
- 12 C.C. Lee, U.S. Gill, and R.G. Sutherland, J. Organometal. Chem., 206 (1981) 89.
- 13 A.N. Nesmeyanov, N.A. Vol'kenau, and I.N. Bolesova, Doklady Akad. Nauk SSSR, 166 (1966) 607.
- 14 A.N. Nesmeyanov, N.A. Vol'kenau, E.I. Sirotkina, and V.V. Deryabin, Doklady Akad. Nauk SSSR, 177 (1967) 1110.
- 15 I.U. Khand, P.L. Pauson, and W.E. Watts, J. Chem. Soc. C, (1968) 2261.